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Summary:

Many leading-edge scientific and engineering simulations expend large
amounts of computational resources for the solution of linear sys-
tems of equations. Multilevel and domain decomposition methods

have been identified as potentially scalable linear system solvers on terascale
computer platforms. However, interprocessor communication overheads,
degree of parallelism (in solving the coarse problems), and effects of increas-
ing number of processors on convergence rates all contribute to the list of
obstacles to true scalability. The novel feature of our domain decomposition
approach is that the subproblem residing in each processor is defined over the
entire domain, although the vast majority of unknowns for each subproblem
are associated with the subdomain owned by the corresponding processor.
The purpose is to ensure that a global coarse description of the problem is
contained within each of the subproblems, so a separate coarse grid solve is
not required to achieve rapid convergence of the overall iteration. This proce-
dure is similar in philosophy to the parallel adaptive mesh refinement para-
digm introduced by Bank and Holst, in that it attempts to both maximize the
use of existing sequential algebraic solvers on each processor, and minimize as
much as possible the communication between processors. This approach can
be applied to general sparse matrices, although matrices arising from dis-
cretizations of partial differential equations are the principal target. 

In a classic domain decomposition (DD) algorithm, each processor is respon-
sible for solving a linear system corresponding to its subdomain. The DD pre-
conditioner can often be improved by adding overlap, typically allowing
processors to solve for certain unknowns near the interface but outside its
domain. Additionally, a coarse grid correction step is often applied to capture
the global low frequency error modes, a necessary step for rapid convergence.
Our philosophy extends these ideas to a natural conclusion; in some sense
each processor is given the entire problem to solve, so there is maximal over-
lap, allowing each processor to independently resolve the global low frequency
errors. However, on the parts of the problem it does not own, it uses a coars-
ened approximation. These subproblems are solved locally on each processor,
using any efficient sequential solver and no communication. Our hope is that
these solves comprise the majority of work involved in the overall solution
process, and the number of outer iterations will be small due to rapid conver-
gence of the global iteration, leading to an efficient scalable algorithm with
low communication.

A preliminary version of a DD procedure based on this paradigm was imple-
mented in the finite element package PLTMG, and the computational results
are quite promising. It appears from two to ten global iterations are necessary
for the class of problems solved by PLTMG (scalar elliptic PDEs), with each
global iteration requiring just two communication steps — a boundary
exchange near the beginning of each iteration, and a few scalars (norms and
inner products used in convergence criteria and damping) near the bottom of
the iteration. However, in PLTMG the issue of coarsening does not arise direct-
ly. The problems which are refined in a given processor’s subdomain and
coarse in the remaining regions are provided naturally by the Bank–Holst par-
allel adaptive meshing paradigm.
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Another algorithm based on this approach was proposed by Bank and Jimack
and analyzed in a manuscript by Bank, Jimack, Nadeem, and
Nepomnyaschikh, where it was shown to be optimal. Here again, the structure
of the coarse mesh was provided a priori, and the details of this grid structure
played an important role in the theoretical analysis.

The next and major step in the project will be to develop a similar algorithm,
basing the implementation as much as possible on existing routines in the
hypre library at LLNL. Since hypre already has excellent algebraic solvers that
can be used in this application, the main focus will be on building the coarse
approximation for regions outside of the given processor’s subdomain. This
coarsening problem is related to the construction of algebraic multilevel pre-
conditioners, but it is simplified because a hierarchy of levels is not needed. It
is hoped that existing routines in hypre can be adapted to the requirements of
this approach. If successful, this inherently parallel DD method will offer an
attractive and easily implemented alternative for solving large sparse systems
of equations arising from discretized PDEs.

Randolph E. Bank
University of California, San Diego
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Summary:

The focus of our research has been on the design, analysis, and software
implementation of a new family of multilevel additive Schwarz precon-
ditioned inexact Newton methods for solving nonlinear algebraic sys-

tems of equations arising from the finite element or finite difference dis-
cretization of nonlinear partial differential equations. Inexact Newton is a very
fast algorithm for solving systems whose nonlinearities are well balanced;
however, such balance rarely exists in the solution of many practically impor-
tant problems, such as high Reynolds number incompressible flows or tran-
sonic compressible flows. A technique of interest for such cases is to precondi-
tion the nonlinear system before calling the inexact Newton solver. This idea
has recently been proven effective when using a single-level additive Schwarz
method such as the nonlinear preconditioner (ASPIN).

The single level ASPIN is partly scalable in the sense that when the mesh is
refined the number of nonlinear outer Newton iterations doesn’t change
much, and the number of global linear iterations for solving the Jacobian sys-
tem doesn’t change much either. However, for elliptically dominated problems
when the number of processors increases, though the number of Newton iter-
ations remains fixed, the number of global linear iterations per Newton itera-
tion increases considerably. This limits the usefulness of the method on ASCI-
scale computers. To make ASPIN scalable with respect to the number of
processors in a parallel computer, we are currently developing several multi-
level versions. 

One approach is based on the classical two-level additive Schwarz method in
which a coarse solution is simply added to the local solutions. We have
showed theoretically that the method provides a nonlinear system that is
equivalent to the original system and showed numerically that the number of
global linear iterations does not increase much when the number of proces-
sors increases.

Our other approach is based on the FAS method, which uses the coarse space
correction in a multiplicative way. The complexity inherent in such software
for parallel multilevel nested nonlinear iterations demands a computational
framework that provides broad-based infrastructure. Our software is written
using Argonne National Lab’s PETSc, which integrates a hierarchy of compo-
nents that range from low-level distributed data structures for grids, vectors,
and matrices through high-level linear and nonlinear solvers. 

Several test cases have been studied using ASPIN. This includes the incom-
pressible Navier–Stokes equation, the compressible full potential equation,
and a non-resistive magnetohydrodynamic flow problem. 
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Summary:

Basic equations of elasticity are generally in self-adjoint form, so they
lend themselves naturally to an energy minimization principle, cast in
terms of the primitive displacement variables. Unfortunately, this direct

approach seems to have many practical difficulties (e.g., degraded approxima-
tion properties of the discretization and convergence properties of the solu-
tion process) as the material tends to become incompressible (i.e., the Poisson
ratio tends to 0.5 from below). There have been several attempts to develop
alternative approaches that are robust in the incompressible limit.
Compounding these difficulties is the fact that what is often needed in prac-
tice is the elements of the stress tensor. These variables can be obtained by
differentiating displacements, but this weakens the order and strength of the
approximation. 

The practical need of the stress tensor motivated extensive studies of mixed-
finite element methods in the stress-displacement formulation. Unlike mixed
methods for second-order scalar elliptic boundary value problems, stress-dis-
placement finite elements are extremely difficult to construct. This is because
the stress tensor is symmetric. A beautiful finite element space had not been
constructed until recently by Arnold and Winther. Their space is a natural
extension of the Raviart–Thomas space of H(div). Previous work imposed the
symmetry condition weakly via a Lagrange multiplier. The minimum degree of
freedom on each triangle of Arnold–Winther space for the symmetric stress
tensor in two dimensions is twenty-four, which is very expensive. Like scalar
elliptic problems, mixed methods lead to saddle-point problems and mixed
finite elements are subject to the inf-sup condition. Many solution methods
that work well for symmetric positive problems cannot be applied directly.
Although substantial progress in solution methods for saddle-point problems
has been achieved, these problems may still be difficult and expensive to solve. 

In the recent years there has been a serious interest in least-squares methods.
A number of least-squares formulations have been proposed, analyzed, and
implemented. In particular, the least-squares method by Cai, Manteuffel, and
McCormick aims to compute the stress tensor directly and, hence, accurately,
and it is robust in the incompressible limit. This method is a two-stage algo-
rithm that first solves for the gradients of displacement (which immediately
yield stress tensor), then for the displacement itself (if desired). Under certain
H2 regularity assumptions, it admits optimal H1-like performance for stan-
dard finite element discretization and standard multigrid and domain decom-
position solution methods that is uniform in the Poisson ratio for all variables.
A limitation of this approach is the requirement of sufficient smoothness of
the original problem. Also, the gradient of displacement is not an immediate
physical quantity and it is hard to extend this approach to nonlinear elasticity. 

With goals of the accurate approximation to the stress, robustness in the
incompressible limit, efficient solvers, and applicability to nonlinear elasticity,
we developed a least-squares finite element method based on the stress-dis-
placement formulation. As we mentioned before, a major numerical difficulty
is how to handle the symmetry of the stress tensor in the stress-displacement
formulation. To circumvent such a difficulty, we impose the symmetry condi-
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Summary (continued):

tion in the first-order system and then apply the least-squares principle to this
over-determined, but consistent system. The least-squares functional uses the
L2 norm and it is shown that the homogeneous functional is equivalent to the
energy norm involving the Lamé constant for the displacement and the stan-
dard H(div) norm for the stress. This implies that our least-squares finite ele-
ment method, using the respective Crouzeix–Raviart and Raviart–Thomas
spaces for the displacement and stress, yields optimal error estimates uniform
in the incompressible limit. The total number of degrees of freedom is twelve
per triangle in two dimensions and eighteen per tetrahedron in three dimen-
sions. This work has been written up for submission to SIAM J. Numer. Anal.
The algebraic system resulting in this discretization may be efficiently solved
by multigrid methods, which is the topic of our current study. We will also con-
tinue our effort by the important extension of this approach to nonlinear elas-
ticity and possible applications in the ALE3D project in LLNL.
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Summary:

In recent years there has been a growing interest in fluid mechanics at micro-
scopic length and time scales. At these scales the continuum representation of
hydrodynamics, as expressed by partial differential equations, breaks down and

computational fluid mechanics (CFD), whose numerical schemes are based on
such a macroscopic description, is not accurate. For such regimes, algorithms
based on statistical mechanics have been developed and shown to capture accu-
rately all the relevant physics. The most well-known examples of such simulation
methods are molecular dynamics (MD) and direct simulation Monte Carlo (DSMC);
the greatest disadvantage of these molecular simulations is their computational
expense relative to CFD methods.

For some problems only a small (but important) volume in a calculation requires
molecular resolution. This scenario is reminiscent of adaptive mesh refinement
where only a limited region, say near a shock front, requires high resolution. This
association led to the development of Adaptive Mesh and Algorithm Refinement
(AMAR), which embeds a DSMC simulation within an adaptive mesh refinement
framework.

Recently, Rich Hornung (LLNL), Sanith Wijesinghe (MIT), and I have developed an
advanced AMAR code using SAMRAI (Structured Adaptive Mesh Refinement
Applications Infrastructure). We have also benefited from the assistance of SAM-
RAI team members (Steve Smith, Andy Wissink, et al.) and Nicholas
Hadjiconstantinou, Wijesinghe’s doctoral advisor at MIT. Using the SAMRAI frame-
work has allowed us to design a code that has multiple DSMC regions and is fully
adaptive; multiple refinement and de-refinement criteria can be imposed. SAM-
RAI-based communications routines handle the passing of particle information
between patches (e.g., copying particles from one DSMC patch into the ghost cells
of another). The hierarchical data in the simulation is output in the form of plot
files formatted for the Vizamrai suite of visualization tools.

The first application for which the AMAR/SAMRAI code was originally targeted is the
Richtmyer–Meshkov instability, that is, the enhancement of mixing in a binary gas
due to the impulsive acceleration from a shock wave. This past year multi-species
functionality was added to the Euler solver. A variety of test cases have been
designed to test these new routines and their coupling with the DSMC portion of the
program. Until recently it was difficult to obtain quantitative results from the
Vizamrai-based output files, but this summer Steve Smith provided us with new data
reduction routines to “crunch” these hierarchical data files into a simplified form that
can be processed by standard numerical tools such as Matlab. The analysis of this
data, as well as further validation testing, is currently underway.

Despite the improved efficiency of a hybrid code versus a conventional particle
simulation, our problems of interest require large-scale computations best per-
formed on a massively parallel computer. Our work this summer showed that the
heavy communications and memory demands of a particle method require the
development of more sophisticated load balancing strategies. The potentially high
cost of particle data redistribution during the adaptive gridding phases of the solu-
tion algorithm should also be investigated. Recently the memory management in
the DSMC routines was redesigned, which we hope will allow us to run significant-
ly larger problems. Parallel algorithm questions such as these are of increasing
interest in computational science research, especially for multi-scale and multi-
algorithm methods such as AMAR.

Investigation of
the Richtmyer–
Mechkov
Instability Using
Adaptive Mesh
and Algorithm
Refinement
Alejandro Garcia
San Jose State University



119

ISCR Subcontract Research Summaries

Summary:

This project focuses on Lagrange–Newton–Krylov–Schur (LNKS) algo-
rithms for large-scale optimization problems that are constrained by
systems of partial differential equations and their applications to opti-

mal control, optimal design, and parameter estimation problems in science
and engineering.

Collectively, we refer to these as “inverse problems” to distinguish them from
“forward problems” that usually characterize large-scale simulations. In the for-
ward problem, problem data—initial conditions, boundary conditions, material
coefficients, and the domain geometry—are specified, and the state of the sys-
tem is found by solving the PDEs. The inverse problem involves the reverse
process: some components of the state are typically specified (through an objec-
tive function to be minimized), and solution of the PDE-constrained optimiza-
tion problem yields components of the data, often called the decision variables.

The inverse problem is often significantly more difficult to solve than the for-
ward problem. This is because the inverse problem includes the PDEs as part
of its constraint set, and because the inverse problem is often ill-posed despite
the well-posedness of the forward problem. Not surprisingly, most of the work
in large-scale simulation has been directed at the forward problem. Sustained
advances over the past twenty years have produced a body of efficient parallel
scalable algorithms for many classes of PDE simulations. This invites research
into what is often the ultimate goal in many areas of computational science
and engineering: the optimal design, optimal control, or parameter estimation
problem, in the form of a PDE-constrained optimization problem.

During my sabbatical at LLNL, I worked on LNKS algorithms for time-depen-
dent PDE-constrained optimization in conjunction with CMU graduate stu-
dent Volkan Akcelik. One of the difficulties with time-dependent problems is
that optimization “sees” the entire time history, and therefore the optimization
problem is coupled across time. We tailored Newton–Krylov-type methods for
time domain inverse wave propagation problems, which serve as a good test-
bed for time-dependent optimization. The specific class of problems studied
was estimation of material parameters in an acoustic medium, given wave-
form observations at specified locations on the boundary. The Newton–Krylov
optimization methods were implemented on top of the parallel PDE solver
library PETSc. Problems of up to several hundred thousand inversion parame-
ters were solved, on up to 128 T3E processors. The mesh-independence of the
Newton and Krylov iterations demonstrated algorithmic scalability with
respect to number of inversion and state parameters. We also studied issues
related to total variation regularization, and to overcoming the multiple mini-
ma problem via multiscale extension of the Newton–Krylov solver.

In addition to conducting research on algorithms for time-dependent inver-
sion, during my stay at LLNL I taught a ten-lecture short course entitled
“Computational Optimization.” The focus of the course was on numerical
algorithms for large-scale continuous optimization problems and their partic-
ularization for optimization problems that are constrained by discretized 
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PDEs. Sensitivity analysis and its relationship to reduced space optimization
methods were also discussed. Course participants came from CASC and sever-
al science and engineering divisions.

During my stay I also participated in the Nonlinear Solvers and Differential
Equations project, and I interacted with the sensitivity analysis group. CASC
collaborator Carol Woodward and I worked on formulating optimal control
and inversion problems for two problems in environmental and atmospheric
sciences that are of interest to LLNL researchers.

Omar Ghattas
Carnegie Mellon University
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Summary:

We are developing a software package for solving Poisson’s equation on
general three-dimensional regions, in approximately twice the time
required for a fast Poisson solver on an embedding cube. The surface

of the region must be triangulated, but the interior need never be meshed.
The algorithm involves two steps, the first of which consists of evaluating a
volume integral and the second of which requires solving Laplace’s equation
with given boundary conditions. Each can be expressed as a Poisson problem
on an embedding cube, provided the discontinuities in the desired solution
and its derivatives across the boundary of the region can be determined. This
requires solving a second Fredholm boundary integral equation. Such equa-
tions are very amenable to solution by iterative methods such as the GMRES
algorithm. If there are m boundary discretization points, then the work to
solve the integral equation using the GMRES algorithm with dense matrix-
vector multiplication is O(m**2), but this can be reduced to O(m) work if the
matrix-vector multiplications are carried out with the Fast Multipole Method.
The remaining work is that of two Poisson solves on a regular lattice through-
out an embedding cube. If there are N lattice points, this is O(N log N) work
using an FFT and can even be carried out with O(N) work using multigrid
methods (though the constant may be larger). We are writing the code in a
modular way so that different algorithms can be substituted for the individual
pieces to see which performs best. 

The algorithm is amenable to parallelization, and we have tested parts of it on
an IBM SP2. The goal was to solve problems on a lattice of (2N )**3 points
using 8p processors in about the same amount of time required to solve a
problem of size N**3 on p processors—i.e., to have a scalable algorithm. With
the fast Poisson solver, the total work is O(N log N) instead of O(N), so we did
not expect perfect scalability, but since log N is such a small factor, we did see
near perfect scalability. This was very encouraging and shows that the algo-
rithm parallelizes efficiently. We plan to incorporate this package in the LLNL
Djehuty code for stellar evolution. Another advantage of this approach, which
will be of particular use in the Djehuty code, is that derivatives can be com-
puted directly. This avoids numerical difficulties associated with computing
the solution and then using a finite difference formula for its derivatives.
Other advantages of this approach include the fact that it can handle exterior
problems as easily as interior ones. As mentioned earlier, one never meshes
the domain but only the boundary. Additionally, some other equations such as
the biharmonic equation, which might prove more difficult for finite differ-
ence or finite element techniques, can be solved with this approach almost as
easily as Poisson’s equation.

A Fast Poisson
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Algebraic multilevel and multigrid methods have gained rising popularity
in the solution of large sparse systems of linear equations. This is
because they often combine the efficiency of classical (structured)

multigrid methods with the applicability to unstructured-grid problems. In
many situations algebraic multilevel preconditioners, constructed in the
framework of incomplete LU decomposition, provide an alternative to classi-
cal algebraic multigrid (AMG) methods.

In the first phase of this research project at CASC/LLNL, which was supported
by the Austrian Science Foundation (FWF), AMG methods were further exam-
ined. The main focus was on a comparative analysis of linear and nonlinear
algebraic multilevel iteration (AMLI) based on special hierarchical ordering
strategies for the unknowns. In both cases the same assumption on the
approximation, caused by neglecting fill-in terms during the LU decomposi-
tion, was used. Theoretical and experimental investigations showed that the
resulting variable-step preconditioners become very close to linear mappings
if we employ approximations to the Schur complements that are close enough
on all levels of cyclic reduction. In this case very few, e.g., two or three, inner
GCG-type iterations on certain levels, e.g., every other level, are sufficient to
achieve optimal order of computational complexity. It is also possible to show
similar convergence rates as for the conjugate gradient method accelerated by
linear AMLI. Compared to the W-cycle variant of linear AMLI the nonlinear
method has the advantage of being free of any method parameters to be esti-
mated. The main results of this work are documented in the paper “An
Algebraic Preconditioning Method for M-matrices: Linear Versus Nonlinear
Multilevel Iteration,” which has been accepted in Linear Algebra with
Applications.

Another research goal in this project was to investigate element-free interpola-
tion in element-based algebraic multigrid (AMGe) methods. In joint work with
Van Emden Henson and Panayot Vassilevski, a new algorithm for constructing
neighborhood matrices to be used for the computation of interpolation
weights was developed. The method utilizes the existence of simple interpola-
tion matrices (piecewise constant for example) on a hierarchy of coarse spaces
(grids). Then one constructs by algebraic means graded away coarse spaces
for any given fine-grid neighborhood. Next, the corresponding stiffness matrix
is computed on this graded away mesh, and the actual neighborhood matrix is
simply the Schur complement of this matrix where degrees of freedom outside
the neighborhood have been eliminated. Once the neighborhood matrices
have been computed they can serve as “element matrices” in AMGe methods.
A description of the algorithm with model complexity analysis as well as some
comparative tests of the quality of the resulting improved interpolation matri-
ces is to be submitted for publication (“Computing Interpolation Weights in
AMG Based on Multilevel Schur Complements”).

Further research was done on new multilevel incomplete factorization algo-
rithms that result in better convergence properties when applied to matrices
that are not M-matrices.
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We studied the problem of developing algebraic multilevel algorithms
in a parallel computing environment. Specifically, we started with a
partitioning of the original domain into subdomains with a generally

unstructured finite element mesh on each subdomain. The meshes do not
need to be aligned across the subdomain boundaries. An element agglomera-
tion-based algebraic multilevel coarsening is then applied independently in
each subdomain. Note that even if one starts with a conforming line grid,
independent coarsening generally leads to non-matching grids on the coarser
levels. The element-based coarsening gives rise to a face decomposition of
each subdomain boundary such that every coarse face is a union of fine faces.
We developed a general dual basis mortar approach to set up global problems
on all levels based on the above coarsening. The resulting “algebraic” mortar
approach is well-defined and consistent in the sense that the generalized dual
basis functions reproduce constants locally. 

As usual, continuity across the interfaces is imposed by integral constraints
against the mortar functions and reduces to a standard dual basis approach
when applied to conventional finite element spaces, e.g., the fine level dis-
cretization. A general code was developed to illustrate the behavior of the pro-
posed method. This code is based on a number of public domain tools and
tools under current development at LLNL. One starts with a conforming
coarse grid which is then partitioned into sub-domains using METIS, and the
subdomain meshes are refined independently in parallel. An element based
agglomeration procedure (AMGe) is then applied to the fine grid problems
locally on the subdomains. This AMGe technique operates on and produces
(on the coarser levels) generalized “elements” defined in terms of relation
tables between elements—faces and degrees of freedom and the local element
matrices. This information carries over to the interfaces and enables the local
face based construction of the mortar.
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Processor speeds are increasing much faster than memory speeds, and
this disparity prevents many applications from making effective use of
the tremendous computing power of modern microprocessors. Current

access times of 50 cycles or more often cause memory performance to domi-
nate application run time, and the processor/memory performance gap con-
tinues to grow. The problem is acute for uniprocessor machines, and even
worse for symmetric multiprocessors sharing memory resources.

Together with members of CASC, we are developing tools and measures to
better understand the memory performance of large, scientific applications.
We are then leveraging these to design more efficient memory systems that
implement Dynamic Access Optimization (DAO) techniques, which attempt
to make better use of the memory system by changing the order and/or
apparent location of memory references. This work is in collaboration with
SRC Computers, Inc., whose reconfigurable SRC-6 SMP machine serves as the
experimental vehicle for our investigations of DAO techniques.

We began by targeting streamed computations with strided access patterns.
The principle of locality has guided the design of many key architectural fea-
tures, including cache hierarchies and TLBs, and quantitative measures of
spatial and temporal locality of reference have been useful for predicting the
performance of memory hierarchy components. Unfortunately, the concept of
locality is constrained to capturing memory access patterns characterized by
proximity, while sophisticated memory systems are capable of exploiting other
predictable access patterns. For instance, the vectors used in streamed appli-
cations lack temporal and often spatial locality, and thus have poor cache
behavior. Nonetheless, their access patterns have the advantage of being pre-
dictable, and this predictability can be exploited to improve the efficiency of
the memory subsystem (e.g., by reordering accesses to avoid bank conflicts or
by prefetching stream data within the memory controller). 

We address this in part by defining the concepts of spatial and temporal regu-
larity, and by introducing a measure of spatial access regularity to quantify
some of the predictability in access patterns. We developed an efficient, online
algorithm to dynamically determine the spatial access regularity in an appli-
cation’s memory references, and we have demonstrated its use on a set of reg-
ular and irregular codes. We found that the use of our algorithm, with its asso-
ciated overhead of trace generation, slows typical applications by at least an
order of magnitude less than traditional, full-trace generation approaches.
Our approach can be applied to the characterization of program access pat-
terns and in the implementation of sophisticated, software-assisted prefetch-
ing mechanisms, and its inherently parallel nature makes it well suited for use
with multi-threaded programs. We have incorporated this technology into a
dynamic instrumentation framework so that we can selectively generate par-
tial data traces through dynamic binary rewriting. This part of our work has
produced a workshop paper, a poster presentation, and a conference paper
submission. 

We are also developing memory microbenchmarks that use hardware perfor-
mance monitors to measure and categorize latencies in SMP machines. We
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have used these benchmarks to evaluate the memory performance of two of
the LLNL machines, the results of which were presented at the IBM SP
Scientific Computing User Group Meeting (SCICOMP 4).

Current work expands on these efforts and investigates memory-controller
architectures and the accompanying software to implement Dynamic Access
Optimizations that exploit regularity and other kinds of predictability to deliv-
er better memory system performance.

Summary (continued):
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My research at CASC was directed towards two projects.  The first pro-
ject was a discretization of the neutron transport equation. A general
problem in the discretization of neutron transport is the approxima-

tion of the function space on the sphere. It is important to find an approxima-
tion that minimizes so-called “ray effects” and that leads to a simple stiffness
matrix.

In cooperation with Britton Chang and Peter Brown, we studied the finite ele-
ment discretization of a function space on the sphere. The corresponding
finite element space consists of piecewise constant functions. Different types
of tessellation of the sphere were studied. To obtain a discretization with
small ray effects, it is necessary to do a very accurate integration of the finite
element functions. Numerical results show that the resulting discretization
leads to smaller ray effects than the ordinate direction approximation of the
sphere. Furthermore, the resulting stiffness matrix can be evaluated in a very
efficient way.

The second project was on automatic parallelization with expression tem-
plates on semi-unstructured grids. Manual parallelization of a numerical algo-
rithm tends to be difficult and time consuming. Therefore, one is interested in
concepts that lead to an automatic parallelization of algorithms.

An important problem of automatic parallelization is the description of algo-
rithms in a suitable, expressive high-level language. In case of numerical algo-
rithms for PDEs, one would like to implement algorithms in a language that is
close to the mathematical language. This can be obtained by expression tem-
plates in C++. This concept was used in the library EXPDE for the finite ele-
ment approximation of PDEs. We implemented a parallel version of this
library. The new parallel version of EXPDE contains a parallel grid generator
for general domains in 3D, multigrid operators, and several other concepts.
The automatic parallelization concept of EXPDE was applied to several PDEs,
including the Stokes equations, transport equations, and the equations of
elasticity. In cooperation with Rob Falgout, we developed a parallelization
concept based on octrees. An important property of this parallelization con-
cept is that the Gauss-Seidel iteration can efficiently be parallelized even in
case of relatively small grids. Numerical results on ASCI Blue-Pacific showed
the scalability of the parallelization concept for more than 500 processors.

It is planned to apply a finite element approximation of functions on the
sphere in the ADRA project. An extension of EXPDE an adaptive grids is also
planned.
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Our project focused on AMG, Spectral AMGe, and FOSPACK. Algebraic
Multigrid (AMG) is actually a class of methods designed to solve a
given discrete problem (generally arising from the discretization of par-

tial differential equations) using multigrid principles by automatically choos-
ing coarser grids, grid transfer operators, and coarser grid operators needed in
multigrid cycling. In the most general case, this is done using only the infor-
mation contained in the matrix itself. This has been shown to be very robust
for elliptic problems and can be applied on unstructured meshes and prob-
lems with varying or even discontinuous coefficients.

Part of this project involved the examination of fill-in on coarser level matrices
while using “classical” AMG codes. While overall complexity appears bounded,
stencil size on coarser levels can grow, especially in large 3D problems. This
can be an impediment to effective parallelization of the method. Studies on
model problems showed that this effect is not due to irregular coarsening near
boundaries, as had been hypothesized, since it also appeared when periodic
boundary conditions were used on uniform hexahedral meshes. Some growth
seems inevitable, even with uniform coarsening patterns. Interpolation trun-
cation was only marginally effective in controlling this growth. Future work
here will focus on sparser coarse grids coupled with “long range” interpolation
as a treatment for this problem.

Spectral AMGe is an offshoot of classical AMG in which interpolation is con-
structed in an effort to more directly approximate the lower part of the spec-
trum of the fine grid operator, since these are the components not effectively
reduced by relaxation. This approach, applicable only to finite element dis-
cretizations, requires the local stiffness matrices corresponding to the fine grid
elements. An agglomeration procedure is used to partition the mesh into
groups of elements, and the local matrices corresponding to each group are
assembled. The eigenvectors corresponding to the small eigenvalues of these
matrices are used to form the columns of interpolation matrix. Such an
approach is potentially much more robust than standard AMG approaches.
Tests were performed on a FOSLS formulation (see below) of 2D Helmholtz
problems, verifying that the method performs well, even in the presence of
large near-null spaces of the operator.

The majority of work in this project was devoted to the further development
and testing of the FOSPACK code, focusing on problems arising in the ALE3D
package. First-order system least squares (FOSLS) is a relatively recent
approach to problem formulation, in which a PDE or system of PDEs is refor-
mulated as a system of first-order equations, and the problem is posed as the
minimization of the sum of the square of the L2 norms of the corresponding
residuals. For many problems, formulations have been obtained in which it
can be shown that this functional is equivalent to the square of the H1 norm
of the error. One very nice consequence of this is that the resulting system has
elliptic diagonal blocks that dominate the off-diagonal blocks. This makes
AMG a very attractive solver for such problems. FOSPACK is a program that
combines easy problem specification, assembly, and solution of FOSLS formu-
lations. We applied the code to elasticity problems from ALE3D, demonstrat-
ing O(h**2) convergence in both displacements and stress, and began devel-
opment of a suite of diagnostic tools to help the user in the formulation of the
FOSLS functional in linear and nonlinear problems.

AMG, Spectral
AMGe, and 
FOSPACK
John Ruge
Front Range Scientific 
Computations, Inc.
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Summary:

Our work involved the development of object-oriented application soft-
ware, within the Overture framework of codes, for the numerical simu-
lation of high-speed reactive flow. The mathematical model on which

the software is based is the reactive Euler equations. The numerical imple-
mentation of this model is fairly general and allows for multiple reacting
species and reaction rates and a general equation of state with the aim of
being able to simulate experimentally observed phenomena in gas or solid
explosives. The software is part of the OverBlown package of fluids codes,
developed and maintained by Bill Henshaw and the Overture team at CASC. It
uses overlapping grids in order to handle general domains and the A++/P++
array class library (developed by Dan Quinlan and the Overture team), which
allows parallel processing. The software includes a patch grid-type adaptive
mesh refinement (AMR) scheme. The software has been carefully tested for
accuracy using existing codes written previously by the author, and it has been
used to model the evolution to detonation of reactive samples subject to vari-
ous initial conditions and within various confinement geometries.

The main work involved the continued development of software for the
numerical solution of the reactive Euler equations. The equations describe the
nonlinear convection of mixture-averaged hydrodynamic variables, such as
density, velocity, pressure and temperature, and the convection and produc-
tion of a set of reacting species that describe the mixture. The chemistry is
modeled by prescribed reaction rates for each component and these rates are
highly state sensitive for the problems of interest. An equation of state for the
mixture is assumed and involves the heats of reaction for each of the reacting
species. For a particular simulation, the equations are to be solved on a given
domain subject to various initial conditions and boundary conditions.

A numerical method of solution was implemented for the reactive Euler equa-
tions. Within the Overture framework, the numerical method discretizes the
equations on a set of overlapping, structured grids that cover the domain of
interest. The software package Ogen generates the overlapping grid and pro-
vides geometric mapping information for each curvilinear component grid
and information concerning the communication of the solution between grids
in the overlap region. This information was considered to be given and thus
the main task was to implement a numerical method for an individual com-
ponent grid and then let the existing software, OverBlown, handle the sur-
rounding numerical details (such as interpolation between component grids,
the application of boundary conditions, time stepping, graphical interface,
and more). 

The numerical method chosen was a shock-capturing, Godunov-type scheme.
The main new element to the software is the implementation of an AMR
scheme. This is a patch-based scheme. Multiple levels of finer AMR grids are
built for each base grid and are used to resolve the fine-scale structure near
the reaction zone. The AMR grids communicate at the boundaries with their
coarser parent grid, or with sister grids at the same level. They may also com-
municate across the overlap. The refinement of the grid is based on an esti-
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mate of spatial and temporal gradients of the numerical solution. This is done
by monitoring the magnitude of first and second differences of the solution
and the magnitude of the reaction rate. The user has considerable freedom to
specify and tune the AMR parameters for a particular problem.

For certain problems it is desirable to use the grid generator to introduce
front-tracking grids on the base level in order to reduce the number of AMR
grids needed to track and resolve a detonation wave. It may also be desirable
from an accuracy point of view to confine a detonation wave to a single com-
ponent grid at the base level in order to avoid the propagation of a detonation
wave along a grid overlap. In order to test this numerical approach, we have
modified the software to allow grid insertion and deletion. At present this can
be done manually, but work is ongoing to test various numerical strategies for
managing the tracking grids automatically based on the solution behavior. For
example, it is possible to determine the approximate location of a detonation
wave based on the behavior of the reacting species.

A number of problems involving high-speed reactive flow have been identified
and are under current investigation using the new software. These problems
involve paths to detonation of reactive samples at critical conditions, multidi-
mensional detonation propagation, and detonation failure.

Summary (continued):

Donald W. Schwendeman
Rensselaer Polytechnic Institute
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Summary:

We have been working on the further development of a general frame-
work for the application of algebraic multigrid (AMG) to systems of
partial differential equations (PDEs). This framework is based on the

idea of using an auxiliary matrix—called the “primary” matrix—for coarsening
and/or for interpolation in the AMG context. A reasonable primary matrix
describes the (pointwise) connectivity structure of some auxiliary “primary”
unknown which should, in some sense, represent the connectivity structure
for all “real” unknowns in the given system of PDEs and, thus, can be used for
pointwise coarsening all unknowns simultaneously.

In practice, there are various ways to apply this framework to solve a given
system of PDEs. For instance, if the geometric positions of the mesh points
are known to AMG, the coefficients of the primary matrix may be based on
geometric distances between points. Alternatively, it may be based on a suit-
able norm of neighboring blocks of unknowns. While, in the first case, coars-
ening would be closely related to geometric coarsening, it would correspond
to a block-coarsening in the second case. One can also imagine that the pri-
mary matrix is defined based on some natural physical quantity for which
there is no reasonable equation contained in the original system of PDEs. An
example of such a situation would be the pressure in the context of the
Navier–Stokes equations.

In addition, there are various ways to construct interpolation based on the
resulting coarse levels. In particular, interpolation may be different for each
physical unknown (e.g., based on the matrix rows in the original system), it
may be the same for each unknown (e.g., based on the matrix rows of the pri-
mary matrix), or it may be blockwise.

For the framework to be as flexible as possible, a reasonable primary matrix is
either defined internally to AMG or it may be user-provided by rendering the
original PDE system by a primary matrix that is fully decoupled from the rest
of the system. The latter option makes particular sense in situations where
AMG cannot construct a reasonable primary matrix based solely on algebraic
information. In many such cases, the user of AMG will be able to define a rea-
sonable matrix based on the underlying physics of the given problem.

Algebraic
Multigrid in an
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Summary:

We focus on the application of mathematical and computational
methods to problems from biology. The analytical studies of small,
specific ODE systems were the goals of two collaborations, which

resulted in two papers on the existence of periodic solutions of some equa-
tions with applications in ecology and on the qualitative behavior and bifurca-
tion phenomena of the FitzHugh–Nagumo system. 

In addition, collaboration with the Environmental Restoration Division on the
effect of oil-production sites on the ecology and biodiversity of habitats has
been started. A conceptual object-oriented model has been formulated which
will be implemented in C++ software. The model will use a geographic infor-
mation system as a database. The data will be used to simulate the develop-
ment of a foodweb consisting of vegetation, rodents, and their predators on a
large-scale spatial grid in real time. Further, we shall simulate the appearance
of spills and their effect on the foodweb.   

Projects in
Computational
Ecology
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132

Institute for Scientific Computing Research

A Robust
Multilevel
Nonlinear
Method
Irah Yavneh
Technion Institute

Summary:

In a new collaboration during the summer, mainly with Carol Woodward,
Panayot Vassilevski, and Jim Jones of CASC, we began investigating a novel
approach for multigrid algorithms for nonlinear problems. There are two

“classical” approaches for solving discretized nonlinear partial differential
equations by multigrid methods. One is to perform a global linearization (GL),
usually by Newton’s method or some inexact variant thereof, and solve the
resulting linear system approximately by a linear multigrid algorithm; this is
then repeated iteratively. The second approach (FAS, by A. Brandt, or NLMG,
by W. Hackbusch) is to only perform a local linearization (LL) in the error-
smoothing (relaxation) process. Convergence acceleration is then provided by
nonlinear coarse-grid operators. 

For “nice” problems, both approaches work well and the difference in efficien-
cy is usually not large. But for more difficult problems, the two approaches
often exhibit distinct behavior, with GL holding an advantage in some situa-
tions and LL in others. We were therefore motivated to develop a method
which will be at least as good as the more suitable of these two approaches,
and often better than both.

Multigrid methods for nonlinear problems have been studied very extensively.
For many problems, robust multigrid methods (such as “Algebraic” and “Black
Box” multigrid) are well-known to be effective even in the presence of discon-
tinuous coefficients and domain boundaries. This represents an advantage for
GL methods, where the problem solved per iteration is linear. LL approaches,
on the other hand, generally require “direct” rediscretization of the nonlinear
operator on the coarse grids, which is less robust. However, the attraction
basin of fast GL methods is usually small, which means that slow global search
methods must often be applied before the GL method becomes effective. This
may represent a significant disadvantage.

In a new approach, called a Multilevel Nonlinear Method (MNM), we elimi-
nate the compromise between global and local linearization, by splitting the
nonlinear operator into two parts. One is a relatively large linear part (normal-
ly obtained by Newton linearization), and the second is the small nonlinear
part, which remains after the linearized operator is subtracted off. We use the
non-robust FAS-like coarse-grid approximation only for the nonlinear part,
while the linear part is approximated by a robust Galerkin coarse-grid opera-
tor. We thus gain the advantages of both classical approaches: a fast asymptot-
ic convergence rate with a large attraction basin. The additional computation-
al cost and storage is only a fraction of that of the standard algorithms, partly
because the extra work is only performed on the non-finest grid. An adaptive
MNM approach and a parallel version have also been conceived.

So far we have only tested the new method on one-dimensional problems,
albeit some realistically difficult ones. In particular, we experimented with a
nonlinear diffusion problem modeling soil water retention. The results are
very encouraging, with the new method performing as predicted by our (so far
simplified) analysis. Further developments, both analytical and experimental,
are in progress. 


